Chapter 14: Partial Derivatives

Section 1:

Definition 1:

R is a region in $x y$-plane. $\left(x_{0}, y_{0}\right)$ a point in the $x y$-plane.

- If there is a disc of center $\left(x_{0}, y_{0}\right)$ which lies entirely in R, we say that $\left(x_{0}, y_{0}\right)$ is an interior point of R.
- If any disc of center $\left(x_{0}, y_{0}\right)$ intersect both R and the complement of R, we say that $\left(x_{0}, y_{0}\right)$ is a boundary point of R.
- The set of all interior points of R is called the interior of R.
- The set of all boundary points of R is called the boundary of R.
- If each point of R is an interior point, we say that R is an open region. (In this case, R is the same as its interior).
- If R contains its boundary, we say that R is a closed region.
- If R lies inside a disc of fixed radius, we say that R is a bounded region.

Definition 2:

The function of 2 variables is a function whose domain is a region in the $x y$-plane and whose range is a subset of the set $I R$.

Definition 3:

$f(x, y)$ is a function of 2 variables. c is in the range of f. The set of all points (x, y, z) in space such that $z=f(x, y)$ is called the graph of f. The graph of f is also called the surface $z=f(x, y)$. The set of all points (x, y) in the plane such that $f(x, y)=c$ is called a level curve of f.

Definition 4:

$f(x, y, z)$ is a function of 3 variables. Suppose c in Range f.
The set of all points (x, y, z) in space such that $f(x, y, z)=c$ is called the level surface of f.

Section 2:

Definition 1:

Suppose R is a region. The point $\left(x_{0}, y_{0}\right)$ point in the plane. If $\left(x_{0}, y_{0}\right)$ is either an interior point of R or a boundary point of R, we say that (x_{0}, y_{0}) is a limit point of R.

Definition 2:

$f(x, y)$ is a function of 2 variables.
$\left(x_{0}, y_{0}\right)$ is a limit point of Domain f.
We say $f(x, y)$ has a limit L as (x, y) approaches to $\left(x_{0}, y_{0}\right)$ and write $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$ if to any given $\varepsilon>0$, there corresponds an $\delta>0$ such that: $\left.\begin{array}{l}0<\text { distance from }\left(x_{0}, y_{0}\right) \text { to }(x, y)<\delta \\ (x, y) \in \text { Domain } f\end{array}\right\} \Rightarrow|f(x, y)-L|<\varepsilon$
i.e.: $\left.\begin{array}{l}0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta \\ (x, y) \in \operatorname{Domain} f\end{array}\right\} \Rightarrow|f(x, y)-L|<\varepsilon$

Theorem 1:

(i) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} x=x_{0}$
(ii) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} y=y_{0}$
(iii) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} k=k$

Theorem 2:

$g(x, y), f(x, y)$ are two functions of two variables. $\left(x_{0}, y_{0}\right)$ is a limit point of Domain f and Domain g. Suppose $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L_{1}$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=L_{2}$ Then:
(i) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) \pm g(x, y)=L_{1} \pm L_{2}$
(ii) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) g(x, y)=L_{1} L_{2}$
(iii) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L_{1}}{L_{2}}$ provided that both $g(x, y)$ and L_{2} are different from zero.

Definition 3:

Suppose $f(x, y)$ is a function of two variables.
Suppose (x_{0}, y_{0}) is a limit point of Domain f.
We say that f is continuous at $\left(x_{0}, y_{0}\right)$ if :
(i) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$
(ii) $\left(x_{0}, y_{0}\right)$ is actually in $\operatorname{Domain} f$.
(iii) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$

Section 3:

Definition 1:

Suppose $f(x, y)$ is a function of 2 variables.
$\left(x_{0}, y_{0}\right)$ is an interior point of Domain f.
For (x, y) in Domain f we define $\Delta x=x-x_{0}$ and $\Delta y=y-y_{0}$
$\Delta f=f(x, y)-f\left(x_{0}, y_{0}\right)=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$
The partial derivatives of f at $\left(x_{0}, y_{0}\right)$ are defined as: $\left\{\begin{array}{l}\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y=0}} \frac{\Delta f}{\Delta x}=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y=0}} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} \\ \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\lim _{\substack{\Delta y \rightarrow 0 \\ \Delta x=0}} \frac{\Delta f}{\Delta y}=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y=0}} \frac{f\left(x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y}\end{array}\right.$
Provided that these two limit exist.

Definition 2:

Suppose $f(x, y)$ is a function of 2 variables. $\left(x_{0}, y_{0}\right)$ is an interior point of Domain f. Then:
We say that f is differentiable at $\left(x_{0}, y_{0}\right)$ if:
(i) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at $\left(x_{0}, y_{0}\right)$.
(ii) $\Delta f=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial x}\left(x_{0} y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$ where $\varepsilon_{0} \rightarrow 0$ and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$

Section 4:

Theorem 1: Chain Rule:

$f(x, y, z)$ is a differentiable function of 3 variables.
$g(t), h(t)$, and $\ell(t)$ differentiable functions of one variable.
If $x=g(t), y=h(t), z=\ell(t)$, and $w=f(x, y, z)$
Then: w is a differentiable function of one variable and : $\frac{d w}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}$

Corollary To Chain Rule:

$f(x, y, z)$ is a differentiable function of 3 variables.
$g(r, s), h(r, s)$, and $\ell(r, s)$ differentiable functions of two variable.
If $x=g(r, s), y=h(r, s), z=\ell(r, s)$, and $w=f(x, y, z)$
Then: w is a differentiable function of two variable and :

$$
\begin{aligned}
& \frac{d w}{d r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}+f_{z} \frac{\partial z}{\partial r} \\
& \frac{d w}{d s}=f_{x} \frac{\partial x}{\partial s}+f_{y} \frac{\partial y}{\partial s}+f_{z} \frac{\partial z}{\partial s}
\end{aligned}
$$

Theorem 2:

$F(x, y)$ differentiable function of 2 variables:
Suppose the equation $F(x, y)=0$ defines y implicitly as a function of x. Say $y=h(x)$ then: $\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}$
Provided that $F_{y} \neq 0$

Section 5:

Definition 1:

$f(x, y, z)$ differentiable function of 3 variables.
Suppose $u=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is a unit vector in space (i.e. $\sqrt{a^{2}+b^{2}+c^{2}}=1$)
$\left(x_{0}, y_{0}, z_{0}\right)$ is an interior point of Domain f.
L is the line through $\left(x_{0}, y_{0}, z_{0}\right)$ parallel to \mathbf{u}.
For (x, y, z) in L, define Δs as the directed distance from $\left(x_{0}, y_{0}, z_{0}\right)$ to (x, y, z).
The directed derivation of f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of \mathbf{u} is defined as: $D_{u} f\left(x_{0}, y_{0}, z_{0}\right)=\lim _{\Delta s \rightarrow 0} \frac{\Delta f}{\Delta s}$ provided that this limit exists.

Formula for the Directed Derivation :

$D_{u} f=\mathbf{u} . \nabla f\left(x_{0}, y_{0}, z_{0}\right)$ where $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{j}+f_{z}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{k}$

Some Important Observations:

1. f increases most rapidly at $\left(x_{0}, y_{0}\right)$ in the direction of $\nabla f\left(x_{0}, y_{0}\right)$. The value of the derivation in this direction is $\nabla f\left(x_{0}, y_{0}\right) \mid$.
2. f decreases most rapidly at $\left(x_{0}, y_{0}\right)$ in the direction of $-\nabla f\left(x_{0}, y_{0}\right)$. The value of the derivation in this direction is $-\left|\nabla f\left(x_{0}, y_{0}\right)\right|$.

Section 7:

Definition 1:

$f(x, y)$ a differentiable function of 2 variables.
(a, b) interior point of $\operatorname{Domain} f$.
If $f_{x}(a, b)=f_{y}(a, b)=0$ then we say that the point (a, b) is a critical point of f.

Theorem 1:

$f(x, y)$ a differentiable function of 2 variables.
(a, b) interior point of Domain f.
Then: f has a local max or a local min at $(a, b) \Rightarrow(a, b)$ is a critical point of f.

Theorem 2: (Second Derivation Test):

$f(x, y)$ a differentiable function of 2 variables.
(a, b) is a critical point of f.
Then:
(i) $\left.\begin{array}{l}f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0 \text { at }(a, b) \\ f_{x x}>0\end{array}\right\} \Rightarrow f$ has a local min at (a, b).
(ii) $\left.\begin{array}{l}f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0 \text { at }(\mathrm{a}, \mathrm{b}) \\ f_{x x}<0\end{array}\right\} \Rightarrow f$ has a local max at (a, b).
(iii) $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}<0$ at $(\mathrm{a}, \mathrm{b}) \Rightarrow f$ has a saddle point at (a, b).
(iv) $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=0$ at $(\mathrm{a}, \mathrm{b}) \Rightarrow$ Test fails.

Theorem 3:

$f(x, y)$ a function of 2 variables.
R is a region in the plane.
Then: $\left.\begin{array}{l}f \text { continuous everywhere in } R \\ R \text { is closed and bounded }\end{array}\right\} \Rightarrow f$ has an absolute max and an absolute min in R.

Section 8:

Theorem 1: Lagrange Multipliers:

$f(x, y, z), g(x, y, z)$ are 2 differentiable functions of 3 variables.
Let S be the level surface $g(x, y, z)=0$ and suppose that S is contained in the Domain f.
Then: if a point $\left(x_{0}, y_{0}, z_{0}\right) \in S$ is a point where f has a local min or local max (as a function of S), then:
$\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)$

